Do you understand the difference between velocity and acceleration? In each situation, state whether it 1, \$\psi\$, or remains constant.

II.

III.

What must I do FIRST when using a physics eqn?

Sample Data:

-	
t(s)	<u>v(m/s)</u>
0	0 \ Imisis
1	1 < 2 m/s/s
2	3./
3	6> 3 m/s/s
<u>t(s)</u>	v(m/s)
0	0 \ 5 m/52
1	5 /
2	9> 4m/52
3	12>3 m/s
t(s)	v(m/s)
0	0 > 2 m/s2
1	2 (
2	4> 7 mist
3	6> 7 m/s2

- Rearrange the eqn to solve for the one unknown
- DO NOT PLUG #'S IN FIRST!
- This allows you to calculate in one step and eliminates over-rounding.
- This also lowers your chances of making errors. Practice:

1.
$$\frac{F}{m} = \frac{ma}{m}$$
 (solve for "a")
$$a = \frac{F}{m}$$

2.
$$v = \frac{\Delta x}{t}$$
 (solve for "t") $t \cdot V = \frac{\Delta x}{t} + \frac{t \cdot y}{v} = \frac{\Delta x}{v}$

3. $\Delta x = vt + 0.5at^2$ (solve for "a") $\frac{t = \Delta x}{v}$ $\frac{\Delta x - vt}{st^2} = \frac{sat^2}{st^2}$ $\frac{\Delta x - vt}{st^2} = \frac{\Delta x - vt}{st^2}$ $\frac{\Delta x - vt}{st^2} = \frac{\Delta x - vt}{st^2}$ $\frac{\Delta x - vt}{st^2} = \frac{\Delta x - vt}{st^2}$ $\frac{\Delta x - vt}{st^2} = \frac{\Delta x - vt}{st^2}$

$$A^{2} \cdot F = \frac{5m_{12}}{4^{2}} \cdot \frac{5t^{2}}{5t^{2}} \cdot \frac{5t^{2}}{5t^{2}} \cdot \frac{5t^{2}}{5t^{2}}$$

- What are some common phrases used in physics problems?
- What are the steps required to solve physics problems?

Vf is not mentioned so use the egn that lossnit have Vf in it: OX=Vit++at

Vf=V12+2aax

- How fast was it going? \Longrightarrow means $V_1' = \overline{}$?
- How fast will it go? \Longrightarrow means $V_f = ?$ Object starts at rest \Longrightarrow means $\bigvee_{i=0}^{\infty} m_{i} \le 1$
- Object slows down ==> means a is negative
- Object comes to a stop \Longrightarrow means $\sqrt{f = 0 m/s}$
- Object moves at a constant velocity $\Longrightarrow \alpha = 0 \text{ m/s}^2$
- Step 1: Draw a pic and lor graph Step 2: List variables/given information
- Step 3: Do algebra to solve for the unknown (if anything equals 0, eliminate from the eqn before doing the algebra)
- Step #: Plug #'s in (be consistent with units and be sure they cancel to give the appropriate unit!!) Practice:
 - 1. Starting from rest, a ball rolls down a hill, uniformly accelerating at 3.2 m/s². How long does it take the ball to roll 24 meters?

$$\frac{\sqrt{1 + 0m/s}}{\sqrt{1 + 3 \cdot 2m/s^2}}$$

$$\frac{\sqrt{2} + 3 \cdot 2m/s^2}{\sqrt{2}}$$

$$\frac{\sqrt{2} + 24m}{\sqrt{2}}$$

$$\frac{2} + 24m}{\sqrt{2}}$$

$$\frac{\sqrt{2} + 24m}{\sqrt{2}}$$

$$\frac{\sqrt{2} + 24m}{$$

2. Skid marks at the scene of an accident show that Justin Time's car moved 64 m before it stopped. If the car decelerated at a rate of 8.0 m/s², how fast was Justin driving before he applied the brakes?

skipped these

More on your own:

- 1. $KE = 0.5 \text{mv}^2$ (solve for "m")
- 2. solve #1 for v
- 3. $V_f^2 = v_i^2 + 2a\Delta x$ (solve for " Δx ")
- 4. solve # 3 for v_i
- How do I know what symbol I am solving for?

what are the kinematic eqns for uniformly accelerated motion? (Write these in your gems of wisdom)

That
is a vi
Firety

Acceleration Eqn	Missing variable
$v_f = v_i + at$	$\Delta \vec{\times}$
$\Delta x = v_i t + \frac{1}{2} a t^2$	\forall_{f}
$\Delta x = v_{x}t - \frac{1}{2}at^{2}$	7i
$v_f^2 = v_i^2 + 2a\Delta x$	t
$\Delta x = \frac{1}{2} (v_f + v_i)t$	ā

- *There are 5 possible variables: Δx , vi, vf, a, t
- *A typical problem won't mention one of these
- *Find this "missing variable" in the table to determine the eqn you will use.
- *Note: We will assume direction of motion is always positive unless otherwise stated.

P.69 (in text) # 26

* Solve it 2 ways:

① use algebra
② use a v-t graph

Algebra Method

Charges direction
of the top of the ramp => Vf = 0 m/s

Vi = +1.75m/s

\[
\frac{1}{4} = -.2m/s^2 \\

\frac{1}{4} = ?

\]

this problem did not mention ax:

$$V_f = V_1 + at$$

$$D = V_1 + at$$

$$-V_1 = at$$

$$t = -\frac{V_1}{a}$$

$$t = -\frac{1.75mls}{-0.2mls^2}$$

t=8.75,5

You should get the same answer same answer both ways both ways both ways 1.75 to slope a slope we we know rise & slope. We we to solve for "run". need to solve for "run". That will be the time.

slope - rise

P. 69 #27

-> slowing down

[race car]

$$\vec{v}_1 = +44 \text{ m/s}$$
 $\vec{v}_1 = +22 \text{ m/s}$
 $\vec{t} = 11s$
 $\vec{t} = ?$

Algebra
Method
$$\overrightarrow{Ax} = \pm (V_4 + V_1)^{\dagger} t$$

$$\overrightarrow{Ax} = \pm \left(22\% + 44\%\right)(115)$$

$$\overrightarrow{Ax} = +363m$$

